A novel class of gene controlling virulence in plant pathogenic ascomycete fungi.
نویسندگان
چکیده
Insertional mutants of the fungal maize pathogen Cochliobolus heterostrophus were screened for altered virulence. One mutant had 60% reduction in lesion size relative to WT but no other detectable change in phenotype. Analysis of sequence at the insertion site revealed a gene (CPS1) encoding a protein with two AMP-binding domains. CPS1 orthologs were detected in all Cochliobolus spp. examined, in several other classes of ascomycete fungi, and in animals but not in basidiomycete fungi, bacteria, or plants. Phylogenetic analysis suggested that CPS1 represents a previously undescribed subset of adenylate-forming enzymes that have diverged from certain acyl-CoA ligases, which in bacteria are involved in biosynthesis of nonribosomal peptides or polyketidepeptide hybrids. Disruption of CPS1 caused reduced virulence of both race T and race O of C. heterostrophus on maize, of Cochliobolus victoriae on oats, and of Gibberella zeae on wheat. These results suggest that CPS1 functions as a general fungal virulence factor in plant pathogenic ascomycetes.
منابع مشابه
Interkingdom Gene Transfer May Contribute to the Evolution of Phytopathogenicity in Botrytis Cinerea
The ascomycete Botrytis cinerea is a phytopathogenic fungus infecting and causing significant yield losses in a number of crops. The genome of B. cinerea has been fully sequenced while the importance of horizontal gene transfer (HGT) to extend the host range in plant pathogenic fungi has been recently appreciated. However, recent data confirm that the B. cinerea fungus shares conserved virulenc...
متن کاملNetwork-Based Data Integration for Selecting Candidate Virulence Associated Proteins in the Cereal Infecting Fungus Fusarium graminearum
The identification of virulence genes in plant pathogenic fungi is important for understanding the infection process, host range and for developing control strategies. The analysis of already verified virulence genes in phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or indirectly linked to fungal pathog...
متن کاملLight Controls Growth and Development via a Conserved Pathway in the Fungal Kingdom
Light inhibits mating and haploid fruiting of the human fungal pathogen Cryptococcus neoformans, but the mechanisms involved were unknown. Two genes controlling light responses were discovered through candidate gene and insertional mutagenesis approaches. Deletion of candidate genes encoding a predicted opsin or phytochrome had no effect on mating, while strains mutated in the white collar 1 ho...
متن کاملA circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana.
The circadian clock of the plant model Arabidopsis thaliana modulates defense mechanisms impacting plant-pathogen interactions. Nevertheless, the effect of clock regulation on pathogenic traits has not been explored in detail. Moreover, molecular description of clocks in pathogenic fungi--or fungi in general other than the model ascomycete Neurospora crassa--has been neglected, leaving this typ...
متن کاملDivergent and Convergent Evolution of Fungal Pathogenicity
Fungal pathogens of plants and animals have multifarious effects; they cause devastating damages to agricultures, lead to life-threatening diseases in humans, or induce beneficial effects by reducing insect pest populations. Many virulence factors have been determined in different fungal pathogens; however, the molecular determinants contributing to fungal host selection and adaptation are larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 10 شماره
صفحات -
تاریخ انتشار 2003